Estimation on Certain Nonlinear Discrete Inequality and Applications to Boundary Value Problem
نویسنده
چکیده
Various generalizations of the Gronwall inequality 1, 2 are fundamental tools in the study of existence, uniqueness, boundedness, stability, invariant manifolds, and other qualitative properties of solutions of differential equations and integral equation. There are a lot of papers investigating them such as 3–8 . Along with the development of the theory of integral inequalities and the theory of difference equations, more attentions are paid to some discrete versions of Gronwall-Bellman-type inequalities such as 9–11 . Some recent works can be found, for example, in 12–17 and some references therein. We first introduce two lemmas which are useful in our main result.
منابع مشابه
On boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملChebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory
In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کامل